Compositional Model Checking of Partially Ordered State Spaces

نویسنده

  • Scott Hazelhurst
چکیده

Symbolic trajectory evaluation (STE) — a model checking technique based on partial orderrepresentations of state spaces — has been shown to be an effective model checking techniquefor large circuit models. However, the temporal logic that it supports is restricted, and as with allverification techniques has significant performance limitations. The demand for verifying largercircuits, and the need for greater expressiveness requires that both these problems be examined.The thesis develops a suitable logical framework for model checking partially ordered statespaces: the temporal logic TL and its associated satisfaction relations, based on the quaternarylogic . TL is appropriate for expressing the truth of propositions about partially ordered statespaces, and has suitable technical properties that allow STE to support a richer temporal logic.Using this framework, verification conditions called assertions are defined, a generalised ver-sion of STE is developed, and three STE-based algorithms are proposed for investigation. Ad-vantages of this style of proof include: models of time are incorporated; circuits can be de-scribed at a low level; and correctness properties are expressed at a relatively high level.A primary contribution of the thesis is the development of a compositional theory for TLassertions. This compositional theory is supported by the partial order representation of statespace. To show the practical use of the compositional theory, two prototype verification sys-tems were constructed, integrating theorem proving and STE. Data is manipulated efficientlyby using binary decision diagrams as well as symbolic data representation methods. Simpleheuristics and a flexible interface reduce the human cost of verification.Experiments were undertaken using these prototypes, including verifying two circuits fromthe IFIP WG 10.5 Benchmark suite. These experiments showed that the generalised STE al-gorithms were effective, and that through the use of the compositional theory it is possible toverify very large circuits completely, including detailed timing properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized $F$-contractions in Partially Ordered Metric Spaces

We discuss about the generalized $F$-contraction mappings in partially ordered metric spaces. For this, we first introduce the notion of ordered weakly $F$-contraction mapping. We also present some fixed point results about this type of mapping in partially ordered metric spaces. Next, we introduce the notion of $acute{mathrm{C}}$iri$acute{mathrm{c}}$ type generalized ordered weakly $F$-contrac...

متن کامل

Generalized Weakly Contractions in Partially Ordered Fuzzy Metric Spaces

In this paper, a concept of generalized weakly contraction mappings in partially ordered fuzzy metric spaces is introduced and  coincidence point  theorems on partially ordered fuzzy metric spaces are proved. Also, as the corollary of these theorems, some common fixed point theorems on partially ordered fuzzy metric spaces are presented.

متن کامل

Bhaskar-Lakshmikantham type results for monotone mappings in partially ordered metric spaces

In this paper, coupled xed point results of Bhaskar-Lakshmikantham type [T. Gnana Bhaskar, V.Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, NonlinearAnalysis 65 (2006) 1379-1393] are extend, generalized, unify and improved by using monotonemappings instead mappings with mixed monotone property. Also, an example is given to supportthese improvements.

متن کامل

Remarks on some recent M. Borcut's results in partially ordered metric spaces

In this paper, some recent results established by Marin Borcut [M. Borcut, Tripled fixed point theorems for monotone mappings in partially ordered metric spaces, Carpathian J. Math. 28, 2 (2012), 207--214] and [M. Borcut, Tripled coincidence theorems for monotone mappings in partially ordered metric spaces, Creat. Math. Inform. 21, 2 (2012), 135--142] are generalized and improved, with much sho...

متن کامل

Extensions of Some Fixed Point Theorems for Weak-Contraction Mappings in Partially Ordered Modular Metric Spaces

The purpose of this paper is to establish fixed point results for a single mapping in a partially ordered modular metric space, and to prove a common fixed point theorem for two self-maps satisfying some weak contractive inequalities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996